4. An introduction to Connes’ non-commutative integration theory

ثبت نشده
چکیده

We are interested in making sense of an integral over a singular space, for example the quotient of the torus T 2 by the lines of irrational slope α / ∈ Q. More generally, we would like to study the quotient space of the global unstable manifolds for a hyperbolic dynamical system. In this chapter we present an “easy” version of Connes’ noncommutative integration theory. We start by studying integer valued functions on a standard measure space, a case in which Connes’ theory and the ordinary integration theory coincide. We then study a simple example of a “singular” measure space, for which the ordinary integration theory is inapplicable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hopf Algebras of Formal Diffeomorphisms and Numerical Integration on Manifolds

B-series originated from the work of John Butcher in the 1960s as a tool to analyze numerical integration of differential equations, in particular Runge–Kutta methods. Connections to renormalization have been established in recent years. The algebraic structure of classical Runge–Kutta methods is described by the Connes–Kreimer Hopf algebra. Lie–Butcher theory is a generalization of B-series ai...

متن کامل

Supersymmetric Quantum Theory and Non-Commutative Geometry

Classical differential geometry can be encoded in spectral data, such as Connes’ spectral triples, involving supersymmetry algebras. In this paper, we formulate non-commutative geometry in terms of supersymmetric spectral data. This leads to generalizations of Connes’ non-commutative spin geometry encompassing noncommutative Riemannian, symplectic, complex-Hermitian and (Hyper-) Kähler geometry...

متن کامل

On Spectral Invariance of Non–Commutative Tori

Around 1980 Connes extended the notions of geometry to the noncommutative setting. Since then non-commutative geometry has turned into a very active area of mathematical research. As a first non-trivial example of a noncommutative manifold Connes discussed subalgebras of rotation algebras, the socalled non-commutative tori. In the last two decades researchers have unrevealed the relevance of no...

متن کامل

Supersymmetric Quantum Theory and ( Non - Commutative ) Differential Geometry

In this paper we describe an approach to differential topology and geometry rooted in supersymmetric quantum theory. We show how the basic concepts and notions of differential geometry emerge from concepts and notions of the quantum theory of non-relativistic particles with spin, and how the classification of different types of differential geometry follows the classification of supersymmetries...

متن کامل

Cyclic cohomology of Hopf algebras, and a non-commutative Chern-Weil theory

We give a construction of Connes-Moscovici’s cyclic cohomology for any Hopf algebra equipped with a character. Furthermore, we introduce a non-commutative Weil complex, which connects the work of Gelfand and Smirnov with cyclic cohomology. We show how the Weil complex arises naturally when looking at Hopf algebra actions and invariant higher traces, to give a non-commutative version of the usua...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000